69 research outputs found

    Mobile Communications Beyond 52.6 GHz: Waveforms, Numerology, and Phase Noise Challenge

    Get PDF
    In this article, the first considerations for the 5G New Radio (NR) physical layer evolution to support beyond 52.6GHz communications are provided. In addition, the performance of both OFDM based and DFT-s-OFDM based networks are evaluated with special emphasis on the phase noise (PN) induced distortion. It is shown that DFT-s-OFDM is more robust against PN under 5G NR Release 15 assumptions, namely regarding the supported phase tracking reference signal (PTRS) designs, since it enables more effective PN mitigation directly in the time domain. To further improve the PN compensation capabilities, the PTRS design for DFT-s-OFDM is revised, while for the OFDM waveform a novel block PTRS structure is introduced, providing similar link performance as DFT-s-OFDM with enhanced PTRS design. We demonstrate that the existing 5G NR Release 15 solutions can be extended to support efficient mobile communications at 60GHz carrier frequency with the enhanced PTRS structures. In addition, DFT-s-OFDM based downlink for user data could be considered for beyond 52.6GHz communications to further improve system power efficiency and performance with higher order modulation and coding schemes. Finally, network link budget and cell size considerations are provided, showing that at certain bands with specific transmit power regulation, the cell size can eventually be downlink limited.Comment: This manuscript has been submitted to IEEE Wireless Communications Magazine (WCM). 8 pages, 4 figures, and 2 table

    Positioning of High-speed Trains using 5G New Radio Synchronization Signals

    Get PDF
    We study positioning of high-speed trains in 5G new radio (NR) networks by utilizing specific NR synchronization signals. The studies are based on simulations with 3GPP-specified radio channel models including path loss, shadowing and fast fading effects. The considered positioning approach exploits measurement of Time-Of-Arrival (TOA) and Angle-Of-Departure (AOD), which are estimated from beamformed NR synchronization signals. Based on the given measurements and the assumed train movement model, the train position is tracked by using an Extended Kalman Filter (EKF), which is able to handle the non-linear relationship between the TOA and AOD measurements, and the estimated train position parameters. It is shown that in the considered scenario the TOA measurements are able to achieve better accuracy compared to the AOD measurements. However, as shown by the results, the best tracking performance is achieved, when both of the measurements are considered. In this case, a very high, sub-meter, tracking accuracy can be achieved for most (>75%) of the tracking time, thus achieving the positioning accuracy requirements envisioned for the 5G NR. The pursued high-accuracy and high-availability positioning technology is considered to be in a key role in several envisioned HST use cases, such as mission-critical autonomous train systems.Comment: 6 pages, 5 figures, IEEE WCNC 2018 (Wireless Communications and Networking Conference

    Transmission over Multiple Component Carriers in LTE-A Uplink

    Get PDF

    SVD-based vs. Release 8 codebooks for Single User MIMO LTE-A Uplink

    Get PDF

    Efficient Fast-Convolution-Based Waveform Processing for 5G Physical Layer

    Get PDF
    This paper investigates the application of fast-convolution (FC) filtering schemes for flexible and effective waveform generation and processing in the fifth generation (5G) systems. FC-based filtering is presented as a generic multimode waveform processing engine while, following the progress of 5G new radio standardization in the Third-Generation Partnership Project, the main focus is on efficient generation and processing of subband-filtered cyclic prefix orthogonal frequency-division multiplexing (CP-OFDM) signals. First, a matrix model for analyzing FC filter processing responses is presented and used for designing optimized multiplexing of filtered groups of CP-OFDM physical resource blocks (PRBs) in a spectrally well-localized manner, i.e., with narrow guardbands. Subband filtering is able to suppress interference leakage between adjacent subbands, thus supporting independent waveform parametrization and different numerologies for different groups of PRBs, as well as asynchronous multiuser operation in uplink. These are central ingredients in the 5G waveform developments, particularly at sub-6-GHz bands. The FC filter optimization criterion is passband error vector magnitude minimization subject to a given subband band-limitation constraint. Optimized designs with different guardband widths, PRB group sizes, and essential design parameters are compared in terms of interference levels and implementation complexity. Finally, extensive coded 5G radio link simulation results are presented to compare the proposed approach with other subband-filtered CP-OFDM schemes and time-domain windowing methods, considering cases with different numerologies or asynchronous transmissions in adjacent subbands. Also the feasibility of using independent transmitter and receiver processing for CP-OFDM spectrum control is demonstrated

    Link parameters bundling across multiple Component Carriers in LTE-A Uplink

    Get PDF

    Single-User MIMO for LTE-A Uplink: Performance Evaluation of OFDMA vs. SC-FDMA

    Get PDF

    5G New Radio Evolution Towards Sub-THz Communications

    Get PDF
    In this paper, the potential of extending 5G New Radio physical layer solutions to support communications in sub-THz frequencies is studied. More specifically, we introduce the status of third generation partnership project studies related to operation on frequencies beyond 52.6 GHz and note also the recent proposal on spectrum horizons provided by federal communications commission (FCC) related to experimental licenses on 95 GHz - 3 THz frequency band. Then, we review the power amplifier (PA) efficiency and output power challenge together with the increased phase noise (PN) distortion effect in terms of the supported waveforms. As a practical example on the waveform and numerology design from the perspective of the PN robustness, link performance results using 90 GHz carrier frequency are provided. The numerical results demonstrate that new, higher subcarrier spacings are required to support high throughput, which requires larger changes in the physical layer design. It is also observed that new phase-tracking reference signal designs are required to make the system robust against PN. The results illustrate that single-carrier frequency division multiple access is significantly more robust against PN and can provide clearly larger PA output power than cyclic-prefix orthogonal frequency division multiplexing, and is therefore a highly potential waveform for sub-THz communications.Comment: This manuscript has been accepted for publication to IEEE 6G Wireless Summit 2020, 6 pages, 4 figure

    On the potential of OFDM enhancements as 5G waveforms

    Get PDF
    • …
    corecore